
.
Army Research Laboratory
Aberdeen Proving Ground, MD 2 1005-5067

ARL-TR-2437 March 2001

Strategies and Experiences Using
High Performance Fortran

Dale Shires, Ram Mohan, and Andrew Mark
Corporate Information and Computing Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

Since its beginnings in the 1950’s, the Fortran language has been the language of
choice for most scientific and engineering programming. Compilers, seizing on the
simplicity of the language, have historically generated highly-optimized machine code.
High performance Fortran (HPF) is a relative new addition to the Fortran dialect. It is an
attempt to provide an efficient high-level Fortran parallel programming language for the
latest generation of parallel computers. Its success has been debatable. By operating at a
high level, the HPF standard does not provide some low-level detail required to achieve
maximum performance in a multiprocessor system. Message passing using highly-tuned
libraries, such as the message passing interface (MPI), will more often than not require
less wall clock time than a comparable HPF code. However, the HPF language and its
compilers continue to mature and improve. HPF provides a convenient way to represent
parallelism for those most comfortable with data parallel methodologies. As such, it can
require a shorter time to solution and provide an acceptable level of efficiency. This
report discusses our experiences with the language, as well as coding strategies and
vendor-specific “hooks” that can be used to boost performance.

ii

Acknowledgments

This research was made possible by a grant of computer time and resources by the Depart-

ment of Defense High Performance Computing Modernization Program. Additional support

was provided by the Integrated Modeling and Testing (IMT) Common High Performance

Software Support Initiative (CHSSI).

. . .
111

INTENTIONALLY LEFT BLANK.

iv

.

1.

2.

2.1

2.2

3.

3.1

3.2

4.

5.

6.

Table of Contents
Acknowledgments

List of Figures.

List of Tables

Introduction

Algorithm Design for Parallel Computers

Parallel Architectures.

Parallel Algorithms and Programming.

HPF Data Parallel Programming

Concurrency and Parallelism in HPF.

3.1.1 Compiler Capabilities and Programming Strategies. .

Locality.

3.2.1 Collective Operations. . . .

3.2.2 Mesh Reconfiguration. . . .

Performance Data

Conclusion

References

Distribution List

Report Documentation Page

.

.

.

.

.

.

.

.

........

........

........

........

........

.

.

.

.

.

.

.

.

.

.

. .

. . .
111

vii

vii

1

2

2

3

5

6

7

14

15

18

25

26

27

29

31

V

. .

List of Figures

1 Original Mesh Configuration With High Communication Requirements. . . . 19

2 A Better Mesh Configuration Realized by Renumbering. 21

3 Optimal Mesh Configuration (Renumbering and Soft BLOCK Boundaries). . . 24

List of Tables

1 Execution Times (Seconds) for a Mesh Analysis on a Cray T3E. 25

vii

INTENTIONALLY LEFT BLANK.

. . .
VI11

1. Introduction

The Fortran programming language has a long history in the scientific and engineering

communities. A vast array of Fortran legacy and dusty-deck codes exist, and the simplicity

of the language and related compiler-generated code efficiency help to keep it to a large

extent the language of choice for parallel program development in scientific computing [l].

The language continues to evolve and mature with compilers now available for the newest

Fortran 90 and Fortran 95 standards. These latest versions begin to provide some facets of

object-oriented program design and language extension by providing modules and abstract

data typing [2].

However, Fortran has continued to lack a set of features needed for portable and efficient

programming on parallel architectures. The High Performance Fortran Forum (HPFF) met

for the first time in 1992 with a goal of providing a set of parallel extensions to the Fortran 90

language [3]. Fortran 90 and HPF are closely associated with the data parallel programming

model. Data parallelism implies a simultaneous operation applied across a large set of data.

For example, array syntax notation in Fortran 90 implies than an identical operation be

applied to all elements of the array. In most cases, this parallelism is at the statement level

in a source program, and is therefore often known as fine-grain parallelism. This was a

natural fit for the massively parallel, fine-grain computers popular at the time, such as the

Connection Machine CM-2 and Mas Par MP-2.

Several vendors supply HPF compilers for today’s high performance computing systems.

Data parallel, also known as SIMD (single instruction, multiple data), computers have largely

been replaced by coarse-grain computers where processing units can work independently [4].

The data parallel methodology is general enough that it can be translated in practice to

work quite well on these multiple instruction, multiple data (MIMD) computers. This re-

port presents our experiences in using HPF for the COMPOSE (Composite Manufacturing

Process Simulation Environment) suite of codes under development at the U.S. Army Re-

1

search Laboratory (ARL) and the University of Minnesota. It describes the state of the

HPF compiler and provides some programming strategies. It also gives some performance

statistics. A more detailed comparison between performance achieved by the HPF compiler

and an explicit message passing approach using MPI is beyond the intended scope of this

report, but will be provided in follow-on manuscripts. Indeed, extension to shared memory

parallelism using techniques such as OpenMP are also planned for comparison.

2. Algorithm Design for Parallel Computers

2.1 Parallel Architectures. The obvious distinguishing feature of parallel comput-

ers is their ability to have numerous processors executing at once. There are, however, several

means to this end. Numerous classes of architectures and topologies have been developed

during the short history of parallel computing. Symmetric multi-processors (SMPs) provide

an easy parallel programming environment and can be inexpensive to assemble. These ma-

chines use a shared memory in which all processors have the same access penalty to memory.

Memory access can potentially limit scalability due to contention in a bus-based topology.

Accordingly, most of these architectures use no more than 64 processors. Tiered memory

systems using cache have been used to mitigate these effects. The Sun Microsystems Ultra

Enterprise 10000 is an example of an SMP. Sun has reported good scalability in clustering

its SMPs [5].

Arrays and clusters have been developed where each node could be an SMP or something

as simple as a personal computer [6]. They are most often connected using high-speed

networks. They are scalable, but provide no shared memory and can be difficult to program.

Massively parallel processors (MPPs) most often feature distributed memories with large

numbers of processors. The processor interconnection network topologies have ranged from

hypercubes to three-dimensional (3-D) meshes. Examples include the Connection Machine-5

(CM-5) that had the ability to function in multiple instruction-multiple data (MIMD) mode,

where each processor can execute different instructions at the same time on different data

2

sets, or single instruction-multiple data (SIMD) mode, where each processor executed the

same instruction in lockstep. The Cray T3E-1200 is also an MPP using a tightly-coupled 3-D

bidirectional torus configuration. Lastly, scalable symmetric multiprocessors (S2MPs) have

been designed to provide the best features of,SMPs, but they allow for MPP scalability.

The SGI Origin 2000 and Origin 3800 are examples of these architectures. They employ

a distributed shared memory and large cache architecture built on a bristled hypercube

topology. The design intent is to remain scalable by limiting the number of potential “hops”

data must make before arriving at the processor requesting the information.

It should be noted that any discussion of interconnection topologies is mostly educational.

New cross-platform tools and standardized parallel programming methodologies have greatly

reduced the need for a detailed knowledge of the processor interconnection network. It

does remain relevant, however, to have a good understanding of the memory systems on

multiprocessor computers. For example, the main solution to overcoming the widening

gap between memory and CPU performance has been the development of layered caches.

Algorithms or coding practices that do not try to remain “cache friendly” are invariably

doomed to poor execution on the majority of high performance computers in use today.

2.2 Parallel Algorithms and Programming. The parallel programmer has several

tasks. The first is to design or select an appropriate algorithm for parallel execution. Often,

the best sequential algorithm, or the most apparent one, is not the algorithm of choice in

a parallel environment. Criteria for selection can include any number of metrics, including

wall clock execution time, FLOP (Floating Point Operations per Second) rates, throughput,

and implementation difficulty. In most cases, an absolute definition of “performance” is

ubiquitous and remains a complex issue. For example, spending an inordinate amount of

time to boost FLOP rates on an algorithm that will only be executed infrequently at most

hardly seems worth the effort.

Once an algorithm is selected or designed within the performance requirements, it must

3

then be coded, tested, and optimized. Several parallel programming models may be apparent

and applicable to the application at hand. Message passing is widely used. Many tasks may

be created with data exchange and interaction between the processes being carried out by

sending and receiving messages. The MPI has become the predominate tool in this regard.

Data parallelism is also widely found in many applications. Data parallelism exploits the

fact that the same operation is often performed on each item in a set of data. A data

parallel program is a sequence of such operations. Currently, High Performance Fortran

(HPF) is the most widely used language to represent data parallelism. Fortran 90 is a data

parallel language in its own right, but it is limited to strict array syntax parallelism. A final

methodology is shared memory programming, which allows processes to execute concurrently

using a common memory space. Examples include OpenMP, SGI loop-level parallelism,

and Cray shared memory programming (SHMEM). Most often, these approaches require

programmer-inserted directives into the code to establish parallel regions or indicate safe

loops for multithreaded execution.

When mapped to the underlying architecture, each of these models has several issues.

Chiefly, these are data placement, the number of processors available, the size of the data,

and the coordination of the processors. There is, however, no best answer as to which pro-

gramming paradigm best fits which particular architecture. Data parallel codes can perform

well in distributed shared memory machines as well as systolic SIMD computers. When used

on distributed memory or distributed shared memory machines, the compiler typically gen-

erates a Single Program-Multiple Data (SPMD) program in which each processor executes

the same program on a different data set [7]. However, data communication and layout are

controlled by the compiler and cannot be easily optimized if required. Furthermore, the mat-

uration rate of data parallel compilers, especially HPF, has been slow due to the complexity

of the task. Therefore, they remain, at least somewhat, in a developmental phase.

MPI codes also create SPMD parallelism. These codes require explicit programmer data

decomposition and can be very efficient; they are known as the “assembly language” of par-

4

allel programming because of the low-level details surrounding the code. Directive-based

loop-level parallelism can be scalable, but on shared memory machines, tedious and some-

times pejorative coding styles are often required to achieve the desired cache optimization.

Furthermore, loop-level parallelism alone may not properly address all numerical formula-

tions.

The choice in parallel methodology can sometimes be difficult. The following sections

describe some of our experiences in parallelizing the main solver in the COMPOSE suite.

The physical solutions have been based on domains rendered by finite elements. This code

has been parallelized using an element-by-element data parallel approach, and by a message

passing approach. This discussion is limited to our experiences and strategies garnered from

using the HPF compiler for the data parallel approach. A detailed comparison between the

two methods will be reported at a later time.

3. HPF Data Parallel Programming

The High Performance Fortran model encompasses both communication and parallelism.

It augments Fortran 90, itself a data parallel language that provides constructs to repre-

sent concurrent execution, but not domain decomposition. HPF provides additional parallel

directives and data placement capabilities. Communication is realized through data distribu-

tion, mapping, and alignment. It is the job of the compiler to effectively map and distribute

data. Communication is implicit in the code. Parallelism is effected through several mech-

anisms, including Fortran 90 style array assignments, parallel library routines, the FORALL

statement, and the INDEPENDENT directive [3]. This list is not complete. Extrinsic proce-

dures are available to allow for other programming paradigms or languages. The language

continues to evolve through changes to the standard. Unlike MPI, which is realized through

calls to a communication library, HPF is a language. To write the most efficient HPF code

possible, it is therefore necessary to understand the way an HPF compiler works.

HPF achieves efficient parallelism through a combination of concurrency and locality of

data reference. While the two are interrelated, it is possible to discuss them separately.

Concurrency assures that all processors are busy, while locality limits the potential amount

of communication found in the concurrent statements. For example, consider the parallel

statement A = B * C (A, B, and C are all conformable vectors), implying A (1) = B (I> *

C(l>,A(2) = B(2) * C (21, etc. This statement can proceed concurrently with or without

communication required between the processors, depending on how the data were distributed.

In the following sections, some of the parallel constructs available in HPF are discussed.

Proper strategies to ensure optimized code generation, as well as good and bad coding

practices, are also highlighted. Also discussed is the importance of data mapping to achieve

locality of reference and avoid potentially costly communication. In this regard, we also

discuss various actions that can be taken to mitigate communications when dealing with

unstructured grid data. The HPF compiler referenced later in the report refers to the

Portland Group HPF (PGHPF) compiler versions 2.4-4 and 3.0 installed at various Major

Shared Resource Centers.

3.1 Concurrency and Parallelism in HPF. The FORALL statement provides for

parallelism by augmenting and merging the Fortran 90 array assignment and WHERE state-

ments. The FORALL construct is well defined with no nondeterminacy. A multistatement

FORALL is interpreted as a series of single FORALL statements. A set of valid index values

is computed based on an optional mask. The right-hand side is then computed for each of

these index values. At the same time, any subexpressions in the left-hand side are evaluated

and saved. The computed value of the right-hand side is then assigned to the left-hand side.

There are no assumptions made on the order of assignments or evaluations. This gives the

compiler some freedom in determining an optimal algorithm within the constraints listed.

These constructs are most useful as a generalization of Fortran 90 array assignments with

more robust array shaping. The INDEPENDENT directive can be applied to either do loops or

FORALL statements. In the case of do loops, this directive tells the compiler that the loop

6

iterations do not interfere with each other in any way and may be executed in parallel. In

other words, there are no loop-carried data dependencies.

3.1.1 Compiler Capabilities and Programming Strategies. The PGHPF compiler

acts as a front-end, translating HPF code into architecture target Fortran 90 code. As

such, the parallel programmer is free to utilize any of various well-documented programming

styles amiable to high-performance microprocessors. Furthermore, compile line options may

be passed directly to the native compiler to control various optimizations.

The PGHPF compiler also allows the user to link to runtime libraries and code gener-

ation supporting either message passing interfaces (MPI) or shared memory programming

(SMP). Linking with MPI causes the code to use MPI to exchange data between proces-

sors. SMP allows the compiler to utilize shared memory references found in shared memory

and distributed shared memory machines. SMP was used since it typically shows better

performance for our targeted shared memory architectures.

Since HPF is a language, it requires a compiler to generate executable code. This starkly

contrasts with MPI, which is not a separate language, but rather calls to a library of func-

tions. The compiler for MPI code is a native compiler (usually C or FORTRAN) that sees

the calls to MPI simply as calls to functions. The native compiler has no ability to optimize

parallelism through message passing library calls. As such, the MPI programmer has sole

responsibility for writing the best possible parallel code. The HPF user can also write clear

and precise parallel code, but the compiler is more forgiving of poorly written code. It can

also restructure code to promote parallelism.

Consider the case of processor synchronization. In parallel programming, synchronization
points are costly. Most often, these points are collective barriers at which each process must
arrive before they can all continue. These points may also exist at entry and exit points for
code that is sequential and must be processed by only one processor. The HPF compiler

tries very hard to remove or limit barrier code generation. One way it does this is through

7

loop fusing. As an example, consider the following two FORALL loops and scalar initialization
of the variable a:

forall (i=l:nelem)

ielaxis(i) = iaxis(ielmat(i))

elangle(i) = angle(ielmat(i))

end forall

a=b*c/d

forall (I=l:nelem)

elkxx(i) = kxx(ielmat(i))

elkxy(i) = kxy(ielmat(i))

elkyy(i) = kyy(ielmat(i))

end forall

As long as it maintains the intent of the FORALL construct, the compiler can generate the
most efficient code possible to achieve the objective. The compiler can determine that there
are no dependencies between the two loops, and that the second FORALL construct contains
no references to the scalar computation. In this case, the compiler can simply move the
scalar computation before or after the FORALL statements and fuse the two loops without
losing correctness or semantics. This allows for the removal of library calls to begin and
end local parallel sections. The HPF compiler moved the scalar computation to a point
following the second FORALL, fused the separate FORALL loops, and generated the following
intermediate code. The code generated for the programmer-fused loop is identical:

do i$i = i$$l, i$$u

ielaxis(i$i+ielaxis$sd(lO)) = iaxis(ielmat(i$i+ielmat$sd(lO))+

+iaxis$sd(lO))

elangle(i$i+elangle$sdl(lO)) = angle(ielmat(i$i+ielmat$sd(lO))+

+angle$sd(lO))

elkxx(i$i+elangle$sdl(lO)) = kxx(ielmat(i$i+ielmat$sd(lO))+

+kxx$sd(lO))

8

elkxy(i$i+elangle$sdl(lO)) = kxy(ielmat(i$i+ielmat$sd(lO))+

+kxy$sd(lO))

elkyy(i$i+elangle$sdl(lO)) = kyy(ielmat(i$i+ielmat$sd(lO))+

+kyy$sd(lO))

enddo

This example is somewhat contrived; since these FORALL loops are independent, the source

code could have equally been written using INDEPENDENT do loops as well. The FORALL

constructs are distinctly different from INDEPENDENT do loops though. The INDEPENDENT do

loops can have scalar temporaries. Precedence graphs of the two constructs for similar code

bodies are very different and hence require different control and data flow analysis. In fact,

the same exercise was attempted using INDEPENDENT do loops to see if the compiler would

fuse them. For any of several reasons, the current version of the compiler did not fuse the

loops.

While it is the job of the HPF compiler to generate efficient code and communication, the

programmer can assist with certain coding styles. Synchronization points can be reduced as

well. For example, programming in styles appropriate for systolic SIMD machines should be

avoided on MIMD parallel computers. The following code fragment produced intermediate

‘code for the Cray T3E-1200 with barriers following each WHERE statement:

where (fillfac < 1.0)

rhs = cvol * fillold - kp + gkflow

fillfac = rhs / cvol

end where

where (fillold /= 1.0 -and. fillfac > 0.999)

fillfac = 1.0

end where

where (fillold /= 1.0 .and. fillfac < 0.0)

9

fillfac = 0.0

end where

where (fillold == 1.0)

fillfac = 1.0

end where

These masked array assignments were rewritten using one INDEPENDENT do loop. This

new formulation was more efficient in that it contained no internal synchronization points. It

is somewhat unrealistic for the programmer to expect developing compilers to be exhaustive

in their ability to optimally process every coding possibility. Indeed, compilers for robust

high-level languages often require years to become very efficient at code generation. This

further highlights the need for parallel programmers to understand the architecture they will

utilize and write appropriate code. The INDEPENDENT do loop should actually perform quite

well on many different computers.

The HPF compiler is very good at generating efficient code for RISC-based superscalar
processors from Fortran 90 array syntax statements. Consider the following code fragment:

slocal = s * wssqrtrec

sk = wssqrtrec * temp * 3.14159

These statements appear to be well suited for vector processing. On MIMD shared memory

machines, the HPF compiler will convert this code to SPMD execution by creating equivalent

FORALL statements. As written, it appears that processor synchronization may occur after

the assignment to slocal before the assignment to sk begins. In HPF, it may be tempting

to rewrite the code using the INDEPENDENT directive. The following code fragment performs

the same function as the array syntax version:

!hpf$ independent

10

do i = 1, n

slocal(i) = s(i) * wssqrtrec(i)

Sk(i) = wssqrtrec(i) * temp(i) * 3.14159

enddo

In general, however, the HPF compiler is also very good at Fortran 90 array syntax merging,

and rewriting the code is unnecessary. HPF can analyze consecutive array syntax statements

and merge them if the meaning is not altered. If the arrays are conformable and distributed

identically, the compiler merges the two into a parallel region with no synchronization be-

tween the individual statements. The resultant code for the two versions is practically the

same.

HPF does share in one of Fortran 90’s problems with code optimization and the use of

array syntax. Fortran 90 provides the ability for programmers to use assumed-shape dummy

arrays as a special type of procedure parameter. Array bounds no longer have to be passed as

arguments along with the array to a called procedure. These arrays are declared with a type

and rank (the number of comma separated entries), but the size (or bounds) is determined at

runtime based on the array passed to the procedure. An explicit interface to the procedure

ensures the type, order, and rank are coherent between caller and callee. However, traditional

compiler optimizations, such as pipelining and the associated loop fusion to boost pipelining

potential, can be taxed by this method. The compiler cannot fuse loops whose bounds

cannot be determined. Transitive properties and other interprocedural analyses can be used

to assist the compiler in determining whether two arrays are of the same extent, but this is

a complicated task. In these instances, it is preferable to use the INDEPENDENT directive to

ensure that the loops are fused.

In the past, many data parallel languages required the extensive use of array syntax

to describe parallelism. CM-Fortran codes for the CM-5 relied heavily on array syntax to

achieve parallel execution. While it can be argued that this syntax is easier to read, it has

11

several potential faults. A major drawback in using array syntax notation for parallelism is

that many temporary multidimensional arrays are often required. This problem can quickly

get out of hand for codes with large data sets. This was a major reason for establishing the

INDEPENDENT do loop and NEW clause construct in HPF.

Consider the following array syntax statements:

x(:> = w(2,:)*p(3,:) - w(3,:)*p(2,:)

y(:> = w(3,:)*p(l,:) - w(l,:)*p(3,:)

z(:> = w(l,:)*p(2,:) - w(2,:)*p(l,:)

d(4,:) = sqrt(x(:)*x(:> + y(:)*y(:) + z(:)*z(:))

This can be rewritten as an independent loop which allows the conversion of x, y, and z to
scalars:

!hpf$ independent, new(x, y, z)

do j = 1, n

x = w(2,i) * p(3,i) - w(3,i) * p(2,i)

y = w(3,i) * p(l,i) - w(l,i) * p(3,i)

2 = w(l,i) * p(2,i) - w(2,i) * p(l,i)

d(4,i) = sqrt(x**2 + y**2 + z**2)

enddo

If the extent of the final dimension is n, we can use only three scalars and reduce memory

requirements by 3n. Furthermore, the loop will require much less storage and will be able

to take advantage of scalar values. This can have an enormous impact on cache-based

architectures.

It may also be the case that further analysis of the code will allow for scalar replace-

ment of w and p if they are used primarily as temporaries. The code was restructured in

critical regions to use the INDEPENDENT clause. Also targeted were small functions that used

12

multidimensional arrays as temporaries. In many of these functions, scalar replacement was

performed by unrolling small inner loops. More thorough findings on the memory conserved

through these techniques will be reported in the future. Further analysis of the code will

undoubtedly reveal more opportunities for wider use of the INDEPENDENT directive and array

to scalar conversion.

Strict use of the array syntax coding style may also be detrimental for another reason.
Array syntax code is also difficult for the compiler to analyze. Consider the following code
fragment:

aelpk(1,:) = fel(l,l,:)*y(lm(l,:)) +

& fel(l,2,:)*y(lm(2,:>> + fe1(1,3,:)*y(lm(3,:)

aelpk (2,:) = fel(2,1,:)*y(lm(l,:)) +

>

& fe1(2,2,:)*y(lm(2,:)) + fe1(2,3,:)*y(lm(3,:))

aelpk (3,:) = fel(3,l,:)*y(lm(l,:)) +

&! fe1(3,2,:)*y(lm(2,:)) + fe1(3,3,:)*y(lm(3,:))

The indirect referencing in y results in a gather operation from potentially remote nodes. As

previously noted, HPF is good at array syntax merging. The compiler merged these three

loops into one locally executed do loop. However, it also generated approximately 120 lines

of code to compute the data communication schedules and other overhead. Furthermore, it

primarily used more complicated memory referencing and references into vectors throughout

the do loops.

Conversely, consider the following equivalent INDEPENDENT do loop:

!hpf$ independent, neW(tl, t2, t3)

do j = 1, nelem

tl = y(lm(l,j>')

t2 = y(lm(2,j))

t3 = y(lm(3,j))

13

aelpk(l,j) = fel(l,l,j)*tl+fel(l,2,j)*t2+fe1(1,3,j)*t3
aelpk(2,j) = fel(2,l,j)*tl+fel(2,2,j)*t2+fe1(2,3,j)*t3
aelpk(3,j) = fel(3,l,j)*tl+fel(3,2,j)*t2+fe1(3,3,j)*t3

enddo

Here, the programmer assisted the compiler by telling it certain values will be reused. The

code required to compute the communication schedules and other overhead was cut by over

50% to approximately 49 lines.

Also, the concurrent do loop contained direct references to the scalars t 1, t2, and t3,

and generally had less complicated memory referencing. Most current architectures must

use at least two layers of cache to overcome the discrepancy between memory access speeds

and processor speeds. The opportunity for independent scalar quantities gives the parallel

programmer the ability to write more cache-friendly code. This INDEPENDENT directive should

also extend well to new techniques and capabilities in the Fortran 90 language, such as

abstract data types and pointers, and new approaches for cache optimizations [8]. The

execution time for a very small problem was reduced from 24 s using the array syntax

version to 21 s using the INDEPENDENT formulation. Obviously, larger problems should see

more pronounced gains.

3.2 Locality. As with any parallel code, the paramount concern rests in limiting to

the greatest extent possible the amount of communication that must occur between the pro-

cessors in the parallel pool. Determining the optimal distribution of data objects operated

on by a program is a global optimization problem, and as such is not tractable. Accord-

ingly, HPF provides directives for data mapping (alignment and distribution) to advise the

compiler on how best to distribute data elements to the parallel processors. As would be ex-

pected, these directives work best at reducing communication in an environment comprised

of regular, grid-based data. For instance, with a 2-D or 3-D grid of data, it is relatively

straightforward for the compiler to distribute data evenly across the parallel processors. For

14

“ghost points,” those items on the data mapping borders which are shared between proces-

sors, it is also feasible for the compiler to vectorize and agglomerate the data that must be

communicated between processors, thus reducing the overall time spent in communication.

Efficient scheduling in these cases is also possible to hide memory hierarchy latency.

Communication is implicit in HPF as compared to explicit calls found in message passing

codes. While this in principle is a factor to make coding in HPF “easier” than traditional

message passing languages, it also represents an area that requires special attention if HPF

codes are to perform as well as their message passing counterparts. Communication in HPF

results from the interplay between the program being executed and the data layout resulting

from the distribution directives. An obvious source of communication is found in collective

operations, such as summation reduction. These operations obviously require some sort of

cross processor communication. Furthermore, with unstructured finite element meshes, there

is the distinct possibility that the HPF data mapping directives will not serve to keep the

data as processor-local as possible. We now discuss how these potential bottlenecks can be

mitigated.

3.2.1 Collective Operations. Preceding data parallel languages recognized and at-

tempted to address the potential poor performance of collective routines. CM-Fortran, used

on the CM-5 computer, used the Connection Machine Scientific Software Library (CMSSL)

which was created for array syntax notation and data parallel architectures. The CM-Fortran

code used the CMSSL collective routines partscattersetup, partscatter, part-gather-setup,

and part-gather. These routines were used to perform partitioned scatter and gather opera-

tions, respectively. These routines use source arrays, destination arrays, and pointer arrays

containing the scatter/gather pattern. Data are then scattered/gathered from the source

array to the destination array.

The CMSSL routines partscattersetup and part-gather-setup were available to optimize

data locality and reduce the associated communication time. During the setup phase, these

15

routines analyzed the required communication patterns that would be required and reordered

the pointer arrays to achieve better data locality.

These collective routines are also possible in HPF. In HPF, there are no default library
routines to do gather operations. The CMSSL equivalent of the two calls

call part-gather-setup(lm,.true.,fillfac,setup,ier)

call part-gather(elfill,fillfac,.true.,setup)

are performed by nested INDEPENDENT do loops

!hpf$ independent, new(j)

do i = 1, ndel

!hpf$ independent

do j = 1, nelem

elfill(i,j> = fillfac(lm(i,j>>

enddo

enddo

The scatter operation is slightly different. Here are the example CMSSL routines to perform
a scatter operation

call part-scatter-setup(lm, .true., wgnode, setup, ier)

call part-scatter(wgnode, wel, .true., setup)

There is a sum-scatter HPF library function to perform the reduction

wgnode = sum-scatter(we1, wgnode, lm)

The full details of the implementation are hidden, but most likely this call computes a

communication schedule for data going to and arriving from remote nodes, moves the data,

16

.

and then computes the reduction. It is also possible for robust compilers to perform the

reductions locally before sending out the data.

These communication operations can be very expensive. A profile of our code revealed

that it was communication bound with well over 50% of the execution time being spent in

calls to the sumscatter library routine. Approximately 20% of the time was spent in code

segments performing gather operations. The library routine sumscatter is called repeatedly,

thousands of times even for small problems. Since it is a library routine, our assumption

was that each time it was called, a schedule was being computed and executed, and any

information gathered by the scheduling algorithm was being discarded before the next call.

Conversations with the Portland Group confirmed that this was the case.

Obviously, the ability to reuse communication schedules is essential to getting good per-
formance with this code. The Portland Group has already recognized this need. They
supplied us with an experimental release 2.4-dev99a of their HPF compiler. The Cray T3E
is the only computer currently targeted in this release. This version of the software al-
lows the programmer to store a pointer to the communication schedule determined by the

compiler and reuse it. The schedule can be called repeatedly, hence removing the need to
recompute the schedule at each call to sumscatter. While the details of the communication
computation are hidden, it is easy to envision a nonoptimal scheduling algorithm taking at
least 0(n2) time, with n being the number of elements in a finite element mesh. The call to
alpkml = sum-scatter (aelpk, alpkml , lm> is replaced with

sked = pghpf~comm~sum~scatter~2(tfill,yl,.true.,lm,.true.

. . .

call pghpf-comm-execute(sked, alpkml, aelpk)

. . .

call pghpf-comm-free(l,sked)

The Portland Group reports that some users have experienced a threefold code speedup

after switching to reusable schedules. A marked decrease in execution time was noticed with

17

reusable schedules. The wall clock execution time for a very small problem (1344 nodes,

2560 elements) using four processors dropped from 28.52 s down to 10.23 s. A 16-processor

run of an airframe structure (29,171 nodes, 58,187 elements) dropped from 15534.78 s to

6111.37 s, cutting the time by a factor of 2.5.

While’gather operations do not contain the arithmetic reduction, they are equally prob-

lematic. As mentioned previously, gathers generate a lot of code to compute off-node data

locations. In test runs, the gathers started to take longer than the reusable schedule scatter

operations. The ability to reuse communication schedules inside of do independent loops

used for gathers is also under investigation. Syntax to accomplish this has been proposed by

the Japan Association for HPF (JAHPF) [9]. C urrently, the ability to reuse communication

schedules remains a vendor-specific feature, as the HPF 3.0 standard does not address the

issue. It will undoubtedly be incorporated into future standards.

3.2.2 Mesh Reconfiguration. The locality of reference greatly impacts the perfor-

mance of a data parallel program. HPF provides several directives and distributions to map

data and promote locality. Of these, the DISTRIBUTE and ALIGN directives are most com-

mon. The DISTRIBUTE directive indicates how an array is to be partitioned to the various

processors. Array alignment, to make sure that corresponding entries of different arrays are

on the same processor, can be specified using the ALIGN directive. For example, in the earlier

example of A = B * C, by aligning B and C with A, we know that A(l), B(l), and C(1)

all reside on the same processor. The array dimensions can be distributed as *, BLOCK, or

CYCLIC.

For some applications, such as 2-D image processing routines, these distributions map

easily and intuitively to the data to promote locality of reference. However, for unstruc-

tured finite element mesh-based data, the data sets are usually element and node based.

Depending on the quality of the original finite element mesh, a BLOCK or CYCLIC distribu-

tion of the data will require differing amounts of communication. For example, consider the

18

Accordingly, it is extremely advantageous to have a preprocessing step which reorders

the data in a smart fashion based on the expected number of processors to be used. This

technique is already used in SPMD message passing codes where the input domain is decom-

posed into a number of partitions equal to the number of processors. The following strategy

was employed.

First, the mesh was partitioned using unstructured graph or mesh partitioning software.

These packages attempt to divide the mesh, either according the the nodal or element data,

into a number of partitions while attempting to limit the number of shared nodes between

partitions. This step provided a list of elements for each domain. Second, the domain shared

node vectors were computed. Third, for each domain or partition, the nodes that are shared

between domains are grouped and renumber first. For example, for partition 0, all the nodes

shared with partition 1 are grouped and renumbered, then partition 2, etc. This step helps

promote data agglomeration and message vectoring. By placing all of the shared items in

a contiguous location, hopefully the compiler will have to do just one send consisting of a

memory starting location and vector length. Finally, all of the domaininterior nodes are

renumbered. The next domain is then processed in a similar fashion.

This process, if implemented efficiently, can be very fast. This renumbering technique

is on the order of O(n log n) + O(m), where n is the number of nodes that are shared

between the various domains, and m is the number of nodes in the mesh. In practice, even

though meshes can be quite large, the mesh or graph partitioning step is more onerous and

time consuming. Hence, this implementation as described is bounded only by the speed

of the mesh partitioning software. Figure 2 shows how nodal renumbering in the elements

can reduce the required communications across processor memories. Communications now

consist of nodal-based data that must be shared between the domains and artifacts left over

from domain partitions not exactly matching the BLOCK distribution boundaries as computed

by the HPF compiler.

20

item v(2) into cache. However, item ~(8000) will also have to be loaded and may not be

used on the next iteration. The overall performance is hard to determine a priori due to the

differing cache architectures (set associative, n-way, etc.) and hardware-software interactions

(instruction prefetching, speculative code execution, etc.), but it is obvious that this does

not lead to cache affinity.

Renumbering techniques were implemented that were proven to improve cache perfor-

mance by reducing the bandwidth and envelope for sparse matrices [lo]. The Reverse Cuthill-

McKee (RCM) approach renumbers poorly numbered meshes to reduce the dramatic cardi-

nality changes between connected element nodes. On message passing implementations of

COMPOSE, these preprocessing steps have shown roughly a 10% reduction in execution time

requirements on the Cray T3E system. The timings reported in this monograph are based

on meshes with somewhat poor numbering, and were done prior to implementing RCM. We

can roughly assume a similar reduction in the reported timings had the RCM pass been

available.

While the aforementioned techniques are very effective at reducing communications, they

still do not address the problem of using a mesh that cannot be rigidly broken along domains

to fit into the compiler partition sizes. With BLOCK distributions, the data is partitioned into

contiguous, equal-sized blocks the size of $, where N is the cardinality of the data set and

P is the number of processors. So, even while using an advanced renumbering technique as

described previously, some communication will be required to move data for these overlapping

points.

One possible way to eliminate these communications for ghost points is through “mesh

padding.” In this process, a graph partition is determined and renumbered as before. Then,

the block distribution boundaries are computed based on the mesh size and compared to how

well the graph/finite element partition maps to these block boundaries. Nodes and elements

are then created as needed to make the finite element mesh fit the mesh partition. Depending

22

upon the initial mesh configuration, the number of nodes and elements that have to be created

vary from the t,ens to the hundreds. However, this approach has several drawbacks. The

original mesh intent may be lost by adding new nodes and elements. Furthermore, we are

adding local computations at the expense of reducing communications.

A better approach has been developed. A new data distribution technique available

in the Portland Group HPF compiler release 3.0 addresses these concerns by providing

asymmetrical block distribution, thus removing the need for mesh padding [9]. The new

approach allows for “soft” BLOCK boundaries that can be set by the software or the user at

runtime and not the compiler at compile time. Combined with the mesh renumber technique

described above, it should limit all communications except for true domain boundary entries.

The syntax is

!HPF$ DISTRIBUTE A(GEN-BLOCK(DIST) 1.

Here, A is the array to be distributed, and DIST is an array whose cardinality is the number

of processors on which the code will run. Each element of DIST contains the size of the data

block that is to be placed on the processor. Since the mesh partitioning and renumbering

pass has already decomposed the data into domains, it can also provide the DIST array with

precise numbers as to the size of the asymmetrical blocks. The overall effect should be to

limit communication to all but the essential shared nodes and hence reduce execution time.

Figure 3 shows the configuration of this optimal data-parallel mesh.

Unfortunately, new languages and compilers do have their faults, as we were unable to

utilize this new feature. As released, the compiler is unable to generate an executable code

that uses generic block distribution and is compiled with the shared memory addressing mode

enabled. In the case of the T3E system, shared memory referencing causes the compiler to

generate code that uses very efficient Cray one-sided “get” and “put” communication calls.

23

4. Performance Data

For two reasons, the discussion of the performance of HPF is limited to the Cray T3E

system alone. First, the ability to reuse communication schedules is only supported on the

HPF compiler for the Cray T3E. Second, PGHPF has been highly optimized for the Cray

T3E system compared to other major architectures [II]. The wall clock execution times for

a representative problem with varying processor counts are given in Table 1. This table lists

the time of execution using reusable communication schedules for the SUM-SCATTER operation.

Since we overwhelmingly showed the need for reusable schedules in the 16-processor case, we

considered further benchmarking using the SUM-SCATTER library routine to be a waste of CPU

hours. Table 1 shows the sometimes dramatic improvement of simple mesh preprocessing

for data parallel execution.

Table 1: Execution Times (Seconds) for a Mesh Analysis on a Cray T3E.

Number of processors

Problem 2 4 8 16 32

Airframe Original Mesh 20951.89 13117.40 8515.41 6111.37 3603.69

structure Renumbered Mesh 19189.21 9989.31 5553.45 3135.03 2095.47

The limits to speedup appear to reside wholly in areas of the code requiring interprocessor

communication. As such, the ability to perform precommunication reductions and reuse

communication schedules appear to be the best opportunity at increasing code speed. The

hope is that asymmetric block distribution and schedule reuse be incorporated into future

releases of the compiler. Mesh renumbering, combined with these techniques, present the

best hope for making HPF viable for unstructured grid problems.

Currently, MPI provides the best wall clock solution for this class of problems. More

information will be provided in future monographs, but an example is telling. On one com-

parision problem (45,547 nodes, 89,945 elements), the MPI implementation of COMPOSE

25

required about 1038 s to complete on a 16-processor run on the Cray T3E system. The

preprocessed and optimized HPF run required almost 3x as long at 2949 s. HPF must

overcome its current limitations to be more broadly applicable.

5. Conclusion

The HPF language and the data parallel model it is built upon have both shown appli-

cability to past, current, and no doubt future parallel computer platforms. As more and

more choices become available to achieve parallelism, it should be pointed out that there is

no single panacea for parallel programming. Some researchers believe that data parallel is a

natural way of thinking and achieving parallelism, compared to something like shared mem-

ory programming or message passing. Others, first exposed to parallelism with loop-level

directives or MPI, would probably say that shared memory or SPMD programming is more

natural. To a large extent, it no doubt depends on the individual and past history.

Furthermore, it is also difficult to judge effort and payoff between various parallel pro-

gramming tools and languages. Some researchers have expressed beliefs that it is easier to

write and maintain code in HPF rather than message passing with MPI [12]. Such state-

ments are misleading. Good performance, however measured, always takes time to achieve.

HPF code requires careful and time consuming tuning, as does a code written using other

languages and libraries.

In summary, HPF provides a viable parallel programming capability for some classes of

problems, but it needs improvements. The standard suffers by not addressing very impor-

tant considerations like interprocessor communication schedules. These issues can only be

addressed at the compiler and standardization levels. No amount of code tuning can correct

these problems. Therefore, it is up to the individual to decide if this degraded performance

is acceptable over some possibly more “expensive” alternative. As the compilers and the

standard continue to mature, they will only improve-their survival depends upon it.

26

6. References

[l] Chapman, S. J. Introduction to Fortrun 90/95. Boston, MA: McGraw-Hill, 1998.

[2] Ellis, T. M., I. R. Philips, and T. M. Lahey. Fortrun 90 Programming. Reading, MA:

Addison-Wesley, 1994.

(31 Koelbel, C. H., D. B. Loveman, R. S. Schreiber, G. Steele, and M. E. Zosel. The High

Performance Fortrun Handbook. Cambridge, MA: MIT Press, 1994.

[4] Kumar, V., A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing:

Design and Analysis of Algorithms. Reading, MA: Benjamin/Cummings, 1994.

[5] Boucher, M. “HPC Performance and Optimization: Libraries, Techniques, and Tools

for Sun’s HPC Product Family.” Lecture at the U.S. Army Research Laboratory Major

Shared Resource Center (MSRC), 1999.

[6] Pfister, G. F. In Search of Clusters: The Coming Battle in Lowly Parallel Computing.

Upper Saddle River, NJ: Prentice Hall, 1995.

[7] Foster, I. Designing and Building Parallel Programs. Reading, MA: Addison-Wesley,

1995.

[8] Chilimbi, T., M. Hill, and J. Larus. “Making Pointer-Based Data Structures Cache

Conscious.” Computer, vol. 33, no. 12, pp. 67-74, 2000.

[9] Portland Group. Private Communication with Director of Marketing, 1999.

[lo] Cuthill, E. and J. McKee. “Reducing the Bandwidth of Sparse Symmetric Matrices.”

In 24th National Conference, Association for Computing Machinery, pp. 157-172, 1969.

[ll] Miles, D. Portland Group. Presentation at the U.S. Army Research Laboratory, Ab-

erdeen Proving Ground, MD, June 2000.

27

[12] Luecke, G. and J. Coyle. “High Performance Fortran Versus Explicit Message Passing

on the IBM SP-2 for the Parallel LU, QR, and Cholesky Factorizations.” Technical

Report, Iowa State University, 1997.

28

NO. OF
COPIES ORGANIZATION

2 DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOIR VA 22060-62 18

1 HQDA
DAM0 FDT
400 ARMY PENTAGON
WASHINGTON DC 203 lo-0460

1 OSD
OUSD(A&T)lODDDR&E(R)
RJTREW
THE PENTAGON
WASHINGTON DC 20301-7100

1 DPTY CG FOR RDA
US ARMY MATERIEL CMD
AMCRDA
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 INST FOR ADVNCD TCI-INLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

1 DARPA
B KASPAR
370 1 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 US MILITARY ACADEMY
MATH SC1 CTR OF EXCELLENCE
MADNMATH
MAJ HUBER
THAYER HALL
WEST POINT NY 10996-I 786

NO. OF
ORGANIZATION COPIES

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL DD
2800 POWDER MILL RD
ADELPHI MD 20783-l 197

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AI R (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHI MD 20783-l 145

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-I 145

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AP
2800 POWDER MILL RD
ADELPHJ MD 20783-l 197

ABERDEEN PROVING GROUND

4 DIR USARL
AMSRL CI LP (BLDG 305)

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
D R SMITH
2800 POWDER MILL RD
ADELPHI MD 20783-l 197

29

INTENTIONALLY LEFT BLANK.

30

REPORT DOCUMENTATION PAGE Fom Awnwd
OMB No. 07044188

b&k mpod bwdu, kc hk oll.cd o(InkmmUam k ..U”“ld to nnnp , hour p nponr, kcl
@taring nd”imhMnhg dm data mmitd. md canpl*lng nd nvMng *n OIWQI ef IMum. Smd

udhg dw dnn far rmkwh(l IIWJUC~O~~ BWChhg -l*&l# data Wra*
Ommm~ldln~m*budnrdmmornyohrnpudo(Ik*

cdlulkn al InkmnUm. kdudkg ugl*sUons for ndudng hk burdmn. u) Wahl- tbadqur*n SuMam, Ohctamm fa InkmmUa~ ~a18 nd Rpora. 12ld .bSumn

Strategies and Experiences Using High Performance Fortran

Dale Shires, Ram Mohan, and Andrew Mark

11. SUPPLEMENTARY NOTES

12a. DISTRIBlJTlON/AVAILABlLlTYSTATEMENT 12b. DlSTRlBUTlON CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT(bfaxlmum 200 words)

Since its beginnings in the 1950’s, the Fortran language has been the language of choice for most scientific and
engineering programming. Compilers, seizing on the simplicity of the language, have historically generated
highly-optimized machine code. High performance Fortran (HPF) is a relative new addition to the Fortran dialect. It
is an attempt to provide an efficient high-level Fortran parallel programming language for the latest generation 01
parallel computers. Its success has been debatable. By operating at a high level, the HPF standard does not provide
some low-level detail required to achieve maximum performance in a multiprocessor system. Message passing using
highly-tuned libraries, such as the message passing interface (MPI), will more often than not require less wall clock
time than a comparable HPF code. However, the HPF language and its compilers continue to mature and improve.
HPF provides a convenient way to represent parallelism for those most comfortable with data parallel methodologies.
As such, it can require a shorter time to solution and provide an acceptable level of efficiency. This report discusses
our experiences with the language, as well as coding strategies and vendor-specific “hooks” that can be used to bcmsl

pfOllllallCe.

14. SUBJECT TERMS 15. NUMBER OF PAGES

data parallelism, high performance Fortran, HPF, code optimization 35
16. PRICE CODE

17. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFED UNCLASSIFIED UNCLASSIFED UL
NSN 7540-O l-260-5500

31
Standard Form 296 (Rev. 2-69)
Prescribed by ANSI Std. 239-16 296-102

INTENTIONALLY LEFT BLANK.

32

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to
the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2437 Mires)

2. Date Report Received

Date of Report March 2001

3. Y Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be
used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.)

Organization

CURRENT
ADDRESS

Name E-mail Name

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or

Incorrect address below.

Organization

OLD
ADDRESS

Name

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

OFFICIAL BUSINESS

DEPARTMENT OF THE ARMY

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL Cl HA
ABERDEEN PROVING GROUND MD 210054067

